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For incompressible three-dimensional (two-dimensional) turbulence of finite 
energy, bounds are obtained on energy (enstrophy) flux. To estimate the non- 
linear terms, we use a decomposition of the Fourier space'into shells of exponen- 
tially increasing radii and the property of boundedness in position space of 
square-integrable functions with Fourier transforms of compact support. In  the 
limit of zero viscosity, it is shown that the three-dimensional (two-dimensional) 
energy (enstrophy) inertial range, if it exists, cannot have an energy spectrum 
steeper than lc-3 (P). Similar results are obtained for the advection of a passive 
scalar. The connexion with the problem of homogeneous turbulence and inter- 
mittency is briefly discussed. 

1. Introduction 
It appears to  be difficult to derive exact bounds for statistical quantities 

directly from the Navier-Stokes equations or from the equivalent hierarchy of 
moment (or cumulant) equations (see, however, Howard 1972). The main reason 
is that high-order moments (or cumulants) are not bounded from above by a 
suitable combination of lower-order moments but only from below. For example, 
if rn is a real centred random variable, E(m4) 2 E(m2)2. The situation is much 
better if, instead of expectation values, we take space integrals. For example, if 
f is a reaI function which is square-integrable and has a square-integrable 
gradient, we have (Ladyzhenskaya 1969, pp. 8, 9) 

a = 1, p = 1 in two dimensions, 
a=1c 2, p = Q in three dimensions. 

Obviously, if we want to use such inequalities, we must consider finite energy 
turbulence and thus give up homogeneity. 

In this paper, we shall obtain bounds for the energy (or enstrophy) flux 
through a given wavenumber k for finite energy turbulence in the absence of 
boundaries. From these, we derive bounds on the power law for the energy 
spectrum in the energy (enstrophy) inertial range. It must be stressed that (i) 
the treatment is not probabilistic, space integrals being taken instead of expec- 
tation values; and (ii) the results are based entirely on a kinematic analysis of 
the nonlinear terms; problems of existence and uniqueness are not considered: 
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for such questions, we refer the reader to Lions’ (1969) book and to the proofs 
of smoothness of the solution of the three-dimensional Euler equation during a 
finite time (Lichtenstein 1925; Ebin & Marsden 1970; Kato 1972; Bourguignon 
& Brezis 1974; Foias, Frisch & Temam 1975; Temam 1975). 

2. Shell decomposition of Fourier space 
Here I I denotes the Euclidian norm (of a vector) in RD (D = space dimension), 

11 11 the L2(RD) norm and ( , ) the L2(IwD) scalar product. Let (k,} be the sequence 
kdl = 0, k, = 2nk, (n > 0) ,  where k, is a reference wavenumber. We define the 
shells 

8, = (k IkERD, kn-l 6 lkl < k,} (n 3 0 )  

and the function spaces 

9, = (u 1 u € L 2 ( W ) ,  support of ti c 8,}, (n 3 O ) ,  

where d denotes the D-dimensional Fourier transform of u. Clearly L2(RD) is 
the direct Hilbert sum of the 9,’s (n 2 0)  and 

where u, = P,u is the orthogonal projection of u on 9,. Notice that the Pourier 
transform of the operator P, is simply its product with the characteristic function 
8,(k) of 8,. 

The main properties of this shell decomposition are ( P l )  that space derivatives 
in 9, are bounded operators, i.e. 

llau,/ax,[l < k, [[unll (a trivial consequence of the definition), 

and (P2) that the functions un( ) are bounded in position space for any n, i.e. 

Proof 
un( x )  = exp ( - i k  . x )  u,( k) dDk, b 

Three-dimensional turbulent $ow$ 
The velocity field obeys the Navier-Stokes equations 

I av/at+(v.vp = -vp+Vvv ,  

v.v = 0. 

Projected onto 9, space, they read 

av,lat + e( ( V .  V )  V )  - VAV, = - Vpg, 

v.v, = 0, 
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with v, = q v  and pt = Fip. We d e h e  En = +/lvnJz, the energy contained in the 
shell 8,. The negative rate of change of the energy contained in the first L 
shells, 

is made up of two parts. 
(i) A viscous contribution 

L 

bounded by vkk 11 v I I  2, which for finite L converges to zero as v +- 0. 
(ii) A nonlinear contribution which is the energy flux through the wavenumber 

kL: 
L m  00 

where 4 , m , n  = (VZ, (Vm*V)Vn) .  

We may decompose the summation in (3) into four parts: 

L m o o  L L L  L L  m 

2-0 m=O n=O 1-0 m=O n-0 1-0 m=L+1 n=O Z=O m=O n-L+1  Z = O  m=L+1 n=L+1  

The skew symmetry of bl,m,n (bl,m,n = - bn,,,J gives 

A 
Since bl,m,n = (4, (v, . V) v,) is zero for valuesof 1, m andn such that no triangle can 
be formed with three wave vectors lying in S,, S ,  and 8, (support condition), 
we can write 

L o o  m 

- z [ c (bl ,m,m+b,,m,m+l)+ z bl,rn,m-l]* ( 5 )  
m=L+2 2-0 m=L+1 

We now seek upper bounds for the Ibz,m,nl. Denoting vector components by 
superscripts, Ibl,m,nl is expressed as 

Using the first definition if 1 > n and the second if 1 < n, we obtain by means of 
properties P1 and P2 

(1 > n),  
(I < nL 
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Finally we get an upper bound on the energy flux: 
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If we assume Ez Q C k i a ,  we find that 

lim IIenergy (kL) = 0 provided that a > +. 
L+m 

Two-dimensional turbulent jaws 
The purely vertical vorticity o = curl v satisfies 

a o p t  + (v. v) 0 = YAW, 

v .v  = 0. (7) 

We define Qz = IIozl12(notice that Qz < 
enstrophy flux ITenst (kL), the contribution of nonlinear terms to 

andKz,,,, = (ol, (v,.V) on). For the 

we have as before 

(8) 
Kow, assuming El < Ckia, we find that 

lim rIenst (kL)  = 0 provided that a > 3. 
L + m  

Advection of a passive scalar 

The passive-scalar density satisfies the equation 

a+pt + (v. v) + = KA+, (9) 

where v is the solution of the Navier-Stokes equations. We define IFl = 1 1 + 1 1 / 2  
and bt, , ,  = (+z, (v, . V) 9,). For the intensity flux IIscalar (kL), the contribution 
of the advection term to 

d L  
-- c 'y.,, dt I = O  

we get as before 

1 nscalar ( k ~  1 ~ " t  (EbYPt+l( i0 k i y i )  + k L ~ ~ ~ 1 ( ' i 1  m=O ~ k )  
m 

+ ( z ~ ~ k ~ y ~ ) [ E t l . u Z 1 + E 1 Y i + 2 +  m=L+2 x E i ( Y L l + Y i + Y i + l ) ] ] .  

(10) 
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3. Results 
Let v(x, t )  be a finite energy solution of the D-dimensional Navier-Stokes equa- 

tions (1) with no boundary conditions. Denoting by 6' the total energy and by 
$(k, t )  the D-dimensional Fourier transform of V(X, t ) ,  we have by Parseval's 

We define the energy spectrum E ( k )  by 

E ( k , t )  = kD-11v(k,t)12. 

The total energy &' is recovered by integration over the wavenumber k and the 
angular variables. Notice that E (k) < Ck-" implies for the shell-integrated energy 
En < C'k;s+l. Similarly, for a passive scalar 9 satisfying (9), we define 

and $(k, t )  = kD-1(&k)(2. 

The main results of 8 2 may now be summarized as follows. 
(a )  Three-dimensional energy spectrum. If E(k)  < Ck-" with s > i, then 

where ITenergy (k) is the energy flux through the wavenumber k. For the existence 
of an inertial range in the limit v-f 0, it  is necessary that 

lim TIenergy (k) = 6 > 0. 

From the above results, it follows that in the inertial range (if it exists) the 
spectrum cannot be steeper than k-%. 

It is fairly obvious that the inertial-range energy spectrum cannot be steeper 
than k-3. Indeed, for E(k)  < Ck-3 with s > 3, the total enstrophy Ilcurlv112 is 
finite; hence the dissipation Y)( curl v1( goes to zero with the viscosity and cannot 
cope with a finite energy flux. 

k+a, 

( b )  Two-dimensional energy spectrum. If E(k)  < C ~ G - ~  with s > 4, then 

lim rJenst (k) = 0, 

where IT,,,, (k) is the enstrophy flux through the wavenumber k. In the enstrophy 
inertial range (if it  exists), the energy spectrum cannot be steeper than k4. 
. (c) Passive-scalar advection in inertial range of three-dimensional turbulence. 
Using the estimate (10) of $2, we find that, if E(k)  c Ck+ with s < 8 and 
$(k) c C'k" with s' > t ( 8  - s), 

k - t W  

where ITsccLlar (k) is the intensity flux of the passive scalar through the wave- 
number k. In  particular, if s = +, the inertial-range spectrum of the passive scalar 
cannot be steeper than k*. 
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(d  ) Passive-scalar advection in dissipation range of three-dimensional turbulence. 
Usingagaintheestimate (1O)of $2, wefindthat,ifE(k) < Ce-ukand@(k) < C’~C-~‘ 
with;’ > 2, then limrIIscalar ( k )  = 0. 

k+w 

In  the limit of zero dissipativity K ,  the spectrum of the passive scalar in the 
dissipation range of the turbulence cannot be steeper than E-2. 

4. Discussion 
First, it is interesting to notice that a k 4  law for the three-dimensional energy 

spectrum may be obtained by a Kolmogorov-type dimensional argument. The 
ingredients of the usual Kolmogorov (1941) argument for homogeneous turbu- 
lence are (i) a wavenumber k, (ii) the energy density per unit volume at this 
wavenumber EKOl(k) and (iii) the dissipation per unit volume eKol. For the 
present case of essentially inhomogeneous turbulence of JCinite energy, we could 
use instead of (ii) and (iii) the total energy density at the wavenumber E(k) ,  
which has dimensions [L]* and the total dissipation 8, which has dimensions 
[L]5 

Carrying out the same analysis for the two-dimensional case yields for the energy 
spectrum in the enstrophy inertial range 

(7 = total enstrophy dissipation rate), which is not exactly the bound s = 4 
obtained from the analysis of $2. The reason for this discrepancy can be readily 
found by examining the localness of interactions in Fourier space. Let us consider 
the right-hand side of (6), giving an upper bound for lTenergy (kL) in three dimen- 
sions. If we insertE(k) N k+(i.e. E, N k,*)wefindthatthe dominant contribution 
comes from cases where I ,  m and n are all close to L. If nowwe take the two-dimen- 
sional case [equation (S)], we see that for E(k)  N k4 (i.e. El - k-3) the dominant 
contribution comes from I and n close to L and small m, an indication that the 
enstrophy transfer is strongly non-local (Kraichnan 1971; Pouquet et al. 1975). 

The following question remains: should the E+ law for the three-dimensional 
case be considered close to the true inertial spectrum for finite energy turbulence ? 
This can hardly be so since we do not expect the small-scale structure of finite 
energy turbulence to be drastically different from the homogeneous case, which 
yields experimentally a k+ law with s close to i. Recall that Q is only an upper 
bound for the spectral index obtained by a decomposition of Fourier space into 
shells. As indicated above, interactions in Fourier space appear to be rather 
local in three dimensions. Still, we have not taken into account another kind of 
localness, namely in position space: distant fluid elements interact only weakly 
through the pressure field. This kind of localness is in fact implicitly taken into 
account in Kolmogorov’s dimensional analysis, leading to the kb law, since he 
considers quantities (energy and dissipation) per unit volume. Furthermore, it 
is not difficult to show that the result of this paper would still hold if in the 
Navier-Stokes equations the coupling coefficient for each triad of wave vectors 

we then obtain by dimensional analysis 

E(E) = C€*k+. 

E(k)  = C’$k+ 
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(k,p,q) were multiplied by a phase factor (Dk,L,p,(I with (D-k,-p,+ = and 
complete symmetry with respect to k, p and q (similar ideas are found in 
Kraichnan 1975); under such a modification, any kind of localness in physical 
space will be entirely lost. This suggests that there is ample room for improve- 
ment of the kf estimate. 

It is not expected that the spectral index will be decreased from $ to exactly 
the value { given by Kolmogorov in 1941. Intermittency effects are likely to  
increase this value, although it is generally believed that the true value is close 
to  $ (Kolmogorov 1962; Kraichnan 1974; Nelkin 1974). From the present 
analysis, we can only be certain that it is less than $. It is interesting to compare 
our $ bound with a heuristic result on intermittency obtained by Mandelbrot 
(1975) : if in the limit of very large Reynolds numbers the dissipative structures 
in the turbulence are concentrated in a set with fractal dimension D, then the 
inertial-range spectrum should be proportional to k--3[5f(3--D)l. When dissipation 
occurs over all space (D = 3), this gives a k-Q law. On the other hand, if dissipa- 
tion is concentrated in a zero-dimensional set (e.g. isolated points), a k b  law is 
obtained. The true dimension is likely to be greater than two for at least two 
reasons. First, as noticed by Mandelbrot (1975), the intersection of a D- 
dimensional set with a line has D - 2 dimensions if D 2 2 and is almost surely 
empty for D < 2, i.e. on moving through the turbulence along a straight line 
we should not notice its presence. Second, if the pressure and the incompressi- 
bility condition are removed, leaving only self-advection, the Navier-Stokes 
equation becomes a kind of three-dimensional Burgers equation and can be 
shown to produce shocks, i.e. two-dimensional dissipative structures; pressure- 
induced instabilities should increase the dimensionality (through twisting and 
folding of the vortex sheets). 

REFERENCES 

BOURGUIGNON, J. P. Q BREZIS, H. 1974 J .  Funct. Anal. 15, 341. 
EBIN, D. G. 85 M ~ S D E N ,  J. E. 1970 Ann. Math. 92, 102. 
FOIAS, C., FRISOH, U. & TEMAM, R. 1975 C. R.  Acad. Sci. Paris, A 280, 505. 
HOWARD, L. N. 1972 Ann. Rev. P l u s  Mech. 4, 473. 
KLnro, T. 1972 J .  Fun&. Anal. 9, 296. 
KOLMOGOROV, A. N. 1941 C. R. Acad. Sci. U.R.S.S. 30, 301. 
KOLMOCOROV, A. N. 1962 J .  Fluid Mech. 13, 82. 
KRAICHNAN, R. H. 1971 J .  Fluid Mech. 47, 525. 
KRAICHNAN, R. H. 1974 J. Fluid Mech. 62, 305. 

LADYZHENSKAYA, 0. A. 1969 The Mathematical Theory of ViScoue Incompressible Flow, 

LICHTENSTEIN, L. 1925 Mathernatische ZeeitSchrijt, p. 89. Springer. 
LIONS, J. L. 1969 Quelques Methodes de Resolution des Problhes aux Lirnites Non-linkaires. 

Dunod-Gauthier-Villars. 
MANDELBROT, B. B. 1975 Some fractal aspects of turbulence: intermittency, dimension, 

kurtosis, and the spectral exponent 513 + B. Proc. Journies Mathhatiqwes sur la 
Turbulence, Orsay (ed. R. Temam). Springer. 

KBAICHNAN, R. H. 1975 Ad?). Math. 16, 305. 

2nd English edn. Gordon & Breach. 

NELKIN, M. 1974 Phgs. Rev. A9, 388. 
POUQUET, A., LESIEUR, M., ANDRI~, J. C. & BASDEVANT, C. 1975 J .  Fluid Mech. 72, 305. 
TEMAM, R .  1975 J. Funct. Anal. 20, 32. 


